

図5-1 GDMSの分析原理

硫酸銅	· 3N 添加剤有	6N 添加剤有	6N 添加剤無
アノード	4N	8N	8N
с	297	255	214
0	41.7	14	8.4
Na	1.2	0.12	0.23
Mg	0.044	0.14	0.01
AI	0.93	25	0.05
Si	275	0.9	17
Р	0.031	0.011	0.037
S	38.4	28.6	0.7
CI	3897	796	436
к	0.735	0.031	0.057
Ca	6.83	0.56	0.49
Ті	0.032	0.013	0.019
Cr	0.041	0.009	0.007
Fe	0.267	0.03	0.026
Ni	0.035	0.01	0.0038
Zn	118	—	2.1
As	5.11	0.019	0.04
Se	164	0.14	0.25
Zr	44.85	0.2	0.06
Ag	4.82	1.03	0.37
In	0.01	0.01	0.01
Sn	0.01	0.01	0.01
Sb	0.01	0.01	0.01
Te	0.01	0.01	0.01
I	0.01	0.037	0.06
Pb	0.01	0.011	0.01
Bi	0.01	0.01	0.01
全不純物濃度 (ppm)	4896.095 ppm	1121.911 ppm	679.969 ppm
Cuの純度(%)	99.5%	99.89%	99.93 %

図5-2 純度の異なる硫酸銅液で作製 したCu膜中の不純物

図5-3 6Nおよび9N硫酸銅を用いて電気めっきしたCu薄膜の不純物の GDMSによる分析結果

図5-4 EBSD測定の概念図

図5-5 Cuめっきのためのトレンチ構造の模式図

図5-6(a) EBSD観察のためのCMPによる試料作製プロセスの模式図 (1)余分な上部層を有するCu配線、 (2) CMPにより高さ100nmまでCuとTa/TaNが除去されたCu配線、研磨深さΔH=100nm、(4) CMPにより高さ50nm までTa/TaNが除去されたCu配線、研磨深さΔH=150nm (b) トレンチの高さが200nm、100nm および50nmのCu配線の断面SEM像

図5-7 (a) 代表的なイメージクオリテイマップ および(b) 配線と配線間絶縁層の イメージクオリテイ分布

図5-8 逆極点図方位EBSDマップ (a) オリジナルデータ (b) IQ-値フィルタリング後、 (c)クリーンアップ処理後

図5-9 高純度および現状プロセスで作製した幅80nmのCu配線の異なるトレンチ高さ における逆極点図(IPF)マップ

図5-10 高純度プロセスおよび現状プロセスで作製した幅80nmCu配線の平均結晶粒径

図5-11 3N硫酸銅と3Nアノードおよび6N硫酸銅と8Nアノードを用いて形成した幅80nmCu配線のND方向とTD方向に平行に配列した(111)面方位の割合に及ぼす配線高さの影響

底面からの粒成長(マイナー)

図5-12 トレンチ構造におけるCu配線の粒成長のメカニズムの模式図

図5-13 GD-OESの原理

図5-15 N⁺Si上にAIを蒸着後、リン酸中に浸漬してAIを除去した後のN⁺Si表面のO1sとSi2pスペクトル

(a) 収差補正無し(b) 収差補正有り(c) 収差補正前後の強度プロファイル

図5-19 Cu配線の結晶粒界におけるCIの偏析